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Abstract. The recent innovations and breakthroughs in diffusion mod-
els have significantly expanded the possibilities of generating high-quality
videos for the given prompts. Most existing works tackle the single-scene
scenario with only one video event occurring in a single background. Ex-
tending to generate multi-scene videos nevertheless is not trivial and ne-
cessitates to nicely manage the logic in between while preserving the con-
sistent visual appearance of key content across video scenes. In this pa-
per, we propose a novel framework, namely VideoStudio, for consistent-
content and multi-scene video generation. Technically, VideoStudio lever-
ages Large Language Models (LLM) to convert the input prompt into
comprehensive multi-scene script that benefits from the logical knowl-
edge learnt by LLM. The script for each scene includes a prompt de-
scribing the event, the foreground/background entities, as well as cam-
era movement. VideoStudio identifies the common entities throughout
the script and asks LLM to detail each entity. The resultant entity de-
scription is then fed into a text-to-image model to generate a reference
image for each entity. Finally, VideoStudio outputs a multi-scene video
by generating each scene video via a diffusion process that takes the ref-
erence images, the descriptive prompt of the event and camera movement
into account. The diffusion model incorporates the reference images as
the condition and alignment to strengthen the content consistency of
multi-scene videos. Extensive experiments demonstrate that VideoStu-
dio outperforms the SOTA video generation models in terms of visual
quality, content consistency, and user preference. Source code is available
at https://github.com/FuchenUSTC/VideoStudio.

1 Introduction

Diffusion Probabilistic Models (DPM) have demonstrated high capability in gen-
erating high-quality images [7,15,16,35,36,44,48,50,68]. DPM approaches image
generation as a multi-step sampling process, involving the use of a denoiser net-
work to progressively transform a Gaussian noise map into an output image.
Compared to 2D images, videos have an additional time dimension, which intro-
duces more challenges when extending DPM to video domain. One typical way is
to leverage pre-trained text-to-image models to produce video frames [20,40,59]

https://github.com/FuchenUSTC/VideoStudio
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Scene-1: The young man measures out ingredients

Scene-2: The young man pours the batter into a pan

Scene-3: The young man stirs the batter in the pan

Scene-4: The young man puts the cake on the table

Scene-5: The young man makes a phone call to invite his friends

Input prompt: A young man with blue hair is making cake
Output video:

Scene-6: The young man is in the outside of his house to wait his friends

Fig. 1: An illustration of prompt and multi-scene video generation by VideoStudio.

or utilize a 3D denoiser network learnt on video data to generate a sequence of
frames in an end-to-end manner [3, 11, 12, 14, 34, 47]. Despite having impressive
results in the realm of text-to-video generation, most existing works focus on only
single-scene videos, featuring one event in a single background. The generation
of multi-scene video is still a problem not yet fully explored in the literature.

The difficulty of multi-scene video generation generally originates from two
aspects: 1) how to arrange and establish different events in a logical and realistic
way for a multi-scene video? 2) how to guarantee the consistency of common
entities, e.g., foreground objects or persons, throughout the video? For instance,
given an input prompt of “a young man is making cake,” a multi-scene video
is usually to present the step-by-step procedure of making a cake, including
measuring out the ingredients, pouring the ingredients into a pan, cooking the
cake, etc. This necessitates a comprehensive understanding and refinement of
the prompt. As such, we propose to mitigate the first issue through capitalizing
on Large Language Models (LLM) to rewrite the input prompt into multi-scene
video script. LLM inherently abstracts quantities of text data on the Web about
the input prompt to produce the script, which describes and decomposes the
video logically into multiple scenes. To alleviate the second issue, we exploit
the common entities to generate reference images as the additional condition
to produce each scene video. The reference images, as the link across scenes,
effectively align the content consistency within a multi-scene video.

To consolidate the idea, we present a new framework dubbed as VideoStu-
dio for consistent-content and multi-scene video generation. Technically, VideoStu-
dio first transforms the input prompt into a thorough multi-scene video script
by using LLM. The script for each scene consists of the descriptive prompt of
the event in the scene, a list of foreground objects or persons, the background,
and camera movement. VideoStudio then identifies common entities that appear
across multiple scenes and requests LLM to enrich each entity. The resultant en-
tity description is fed into a pre-trained Stable Diffusion [44] model to produce a
reference image for each entity. Finally, VideoStudio outputs a multi-scene video
via involving two diffusion models, i.e., VideoStudio-Img and VideoStudio-
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Vid. VideoStudio-Img is dedicated to incorporating the descriptive prompt of
the event and the reference images of entities in each scene as the condition
to generate a scene-reference image. VideoStudio-Vid takes the scene-reference
image plus temporal dynamics of the action depicted in the descriptive prompt
of the event and camera movement in the script as the inputs and produces a
video clip for each scene.

The main contribution of this work is the proposal of VideoStudio for gener-
ating consistent-content and multi-scene videos. The solution also leads to the
elegant views of how to use LLM to properly arrange content of multi-scene
videos and how to generate visually consistent entities across scenes, which are
problems seldom investigated in literature. Extensive experiments conducted on
public benchmarks demonstrate that VideoStudio outperforms SOTA video gen-
eration models in terms of visual quality, content consistency and user preference.

2 Related Work

Image generation is a fundamental challenge of computer vision and has
evolved rapidly in the past decade. Recent advances in Diffusion Probabilistic
Models (DPM) have led to remarkable improvements in generating high-fidelity
images [3,7,15,16,32,33,35–37,43,44,48–50,68]. DPM is a category of generative
models that utilizes a sequential sampling process to convert random Gaussian
noise into high-quality images. For example, GLIDE [37] and DALL-E 2 [43]
exploit the sampling process in the pixel space, conditioned on the text prompt
using classifier-free guidance [16]. Nevertheless, training a powerful denoising
network remains challenging due to high computational cost and memory de-
mand associated with sampling at the pixel level. To mitigate this problem,
Latent Diffusion Models (LDM) [44] employ sampling in the latent feature space
that is established by a pre-trained autoencoder, leading to the improvements on
computation efficiency and image quality. Furthermore, the application of DPM
is further enhanced by incorporating advanced sampling strategies [32, 33, 49]
and additional control signals [35,68].

Video generation is a natural extension of image generation in video do-
main. The early approaches, e.g., ImagenVideo [14] and Make-A-Video [47], train
video diffusion models in the pixel space, resulting in high computational com-
plexity. Following LDM in image domain, several works [3,6,11,34,70] propose
to exploit the sampling process in the latent feature space for video genera-
tion. These works extend the 2D UNet with the transformer layers [23,62,63] to
3D UNet by injecting temporal self-attentions [28,29] and/or temporal convolu-
tions [30,31]. For instance, Video LDM [3] and AnimateDiff [11] focus on training
the injected temporal layers while freezing the spatial layers to preserve the abil-
ity of the pre-trained image diffusion model. VideoFusion [34] decomposes the
3D noise into a 2D base noise shared across frames and a 3D residual noise, en-
hancing the correlation between frames. However, the generated videos usually
have a limited time duration, typically around 16 frames. Consequently, some
recent researches emerge to generate long videos by an extrapolation strategy or
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Input Prompt

“a young man with blue hair is making cake”

Large Language Model
(LLM)

Query

“You need to 
envision a multi-
scene video ... ”

Multi-Scene Video Script

Scene 1: “The young man measures out ingredients”; Objects: 
young man; Background: kitchen; Camera: moving left fast

Scene 2: “The young man pours the batter into a pan”; Objects: 
young man; Background: kitchen; Camera: moving left slowly

Scene N-1: “The young man puts the cake on the table”; Objects: 
young man, cake; Background: kitchen; Camera: static

…

Scene N: “The young man makes a phone call to invite his friends”; 
Objects: young man, phone; Background: dining room; Camera: static

Query

“You need to 
describe the entities 

in detail ... ”

Entity Descriptions

young man: “The photo depicts a young man with blue hair 
standing in a kitchen, wearing an apron and holding a mixer ...”

cake: “The cake is a masterful work of art, with intricate designs and 
patterns that are both visually appealing and visually stunning ... ”

kitchen: “This photo of a kitchen features a clean and modern 
aesthetic, with white cabinets and countertops ... ”

dining room: “The photo captures a modern luxurious dining room 
with elegant furniture and a breathtaking view of the city skyline.”

“young man” “cake” “kitchen” “dining room”

Text-to-Image Model 
（T2I Model)

Entity Descriptions

(1) Multi-scene video script generation (2) Entity reference image generation

(3) Video scene generation

Scene N-1: “The young man 
puts the cake on the table”

Entities:
“young man”
“cake”
“dining room”

Action: putting the cake on the table; Camera: static

Scene-Reference Image

VideoStudio-Vid

VideoStudio-Img

Video Scene

VideoStudio-Img VideoStudio-Vid

Foreground Reference images Background Reference images
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Fig. 2: An overview of our VideoStudio framework for consistent-content and multi-
scene video generation. VideoStudio consists of three main stages: (1) multi-scene video
script generation, (2) entity reference image generation, and (3) video scene generation.
In the first stage, LLM is utilized to convert the input prompt into a comprehensive
multi-scene script. The script for each scene includes the descriptive prompt of the
event in the scene, a list of foreground objects or persons, the background, and camera
movement. We then request LLM to detail the common foreground/background entities
across scenes. These entity descriptions are fed into a text-to-image (T2I) model to
produce reference images in the second stage. Finally, in the third stage, VideoStudio-
Img exploits the descriptive prompt of the event and the reference images of entities
in each scene as the condition to generate a scene-reference image. VideoStudio-Vid
takes the scene-reference image plus temporal dynamics of the action depicted in the
descriptive prompt of the event and camera movement in the script as the inputs and
produces a video clip for each scene.

hierarchical architecture [12, 25, 52, 53, 66]. In addition, video editing techniques
utilize the input video as a condition and generate a video by modifying the
style or key object of the input video [9, 10,12,18,39,40,46,54,57,59,65].

In short, our work in this paper focuses on consistent-content and multi-scene
video generation. The most related work is [26], which aligns the appearance of
entities across scenes through the bounding boxes provided by LLM. Ours is
different in the way that we explicitly determine the appearance of entities by
generating reference images, which serve as a link across scenes and effectively
enhance the content consistency within a multi-scene video.

3 VideoStudio

This section presents the proposed VideoStudio framework for consistent-content
and multi-scene video generation. Figure 2 illustrates an overview of VideoStudio
framework, consisting of three main stages: (1) multi-scene video script gener-
ation (Sec. 3.1), (2) entity reference image generation (Sec. 3.2), and (3) video
scene generation (Sec. 3.3).
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3.1 Multi-Scene Video Script Generation

As depicted in Figure 2(1), VideoStudio utilizes LLM to convert the input
prompt into a comprehensive multi-scene script. In view of its high deploy-
ment flexibility and inference efficiency, we use the open-source ChatGLM3-6B
model [8, 67]. The LLM is requested by a pre-defined query, “You need to envi-
sion a multi-scene video and describe each scene ...”, to treat the input prompt
as the theme, logically decompose the video into multiple scenes and generate a
script for each scene in the following format:

[Scene 1: prompt, foreground, background, camera move];
[Scene 2: prompt, foreground, background, camera move];

...

[Scene N : prompt, foreground, background, camera move].

(1)

Here N denotes the number of video scenes, which is determined by the LLM. For
each scene, the descriptive prompt of the event in the scene, a list of foreground
objects or persons, the background, and camera movement are provided. The
camera movement is restricted to a close-set of directions {static, left, right, up,
down, forward, backward} and speeds {slow, medium, fast}.

Next, VideoStudio identifies the common entities, which include foreground
objects or persons and background locations. To achieve this, we ask the LLM to
assign the common object, person, or background the same name across scenes
when generating the video script. Therefore, we strictly match the name of enti-
ties and discover the entities that appear in multiple scenes. To further improve
the quality of the video script, we employ the capability of the LLM for multi-
round dialogue. Specifically, we start the dialogue by asking the LLM to specify
the key aspects with respect to the entity, such as “What are the aspects that
should be considered when describing a photo of a young man in detail?” In the
next round of dialogue, we request the LLM to describe the entity from the
viewpoints of the given aspects. Moreover, the original prompt is also taken as
the input to the LLM to ensure that the essential characteristics, e.g., “blue hair”
of the young man, are emphasized in entity description generation.

Please note that the GPT-4 [38] can also be used for script generation, but it
incurs an additional 0.12 USD for the GPT-4 API call per query. In VideoStudio,
we leverage the open-source ChatGLM3-6B and perform the inference on our de-
vices to circumvent the need for API call. Nevertheless, the scale of ChatGLM3-
6B is much smaller, resulting in unstable outcomes that may deviate from the
specified script format. To alleviate this issue, we have empirically abstracted
the following principles to enhance the stability of open-source LLM:

• Before the dialogue starts, we provide comprehensive instructions to the
LLM, delineating the additional requirements, specifying the script format,
and offering the examples of the expected outputs.

• For each query, we manually select five in-context examples as the historical
context for multi-round dialogue. These examples are very carefully designed
to ensure a diverse range of scenes, key objects, and background, and serve
to emphasize the required script format for LLM.
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• After each round of dialogue, we verify the output format. If the results are
seemingly inappropriate, we re-run the entire script generation stage. Such
strategy is simple to implement without requiring any additional expenses.

We will provide the full version of our instructions, examples, and queries in the
supplementary materials.

3.2 Entity Reference Image Generation

In the second stage of VideoStudio, we unify the visual appearance of common
entities by explicitly generating a reference image for each entity. The reference
images act as the link to cohere the content across scenes. We achieve this by
first feeding the entity description into a pre-trained Stable Diffusion model for
text-to-image generation. Then, we employ the U2-Net [41] model for salient
object detection, and segment the foreground and background areas in each
resultant image. By utilizing the segmentation masks, we can further remove
the background pixels from the foreground reference image and vice versa, in
order to prevent the interference between the foreground and background visual
contents in the reference images.

3.3 Video Scene Generation

VideoStudio produces a multi-scene video by generating each scene via the dif-
fusion models by taking the reference images, the descriptive prompt of the
event and camera movement into account. This stage involves two primary com-
ponents: the VideoStudio-Img, which utilizes the descriptive prompt of the
event and the reference images of entities in each scene as the condition to gen-
erate a scene-reference image, and the VideoStudio-Vid, which employs the
scene-reference image plus temporal dynamics of the action depicted in the de-
scriptive prompt of the event and camera movement in the script as the inputs
and produces a video clip for each scene.

The VideoStudio-Img component aims to generate a scene-reference image
conditioning on the event prompt and entity reference images for each scene. To
accomplish this, we remold the Stable Diffusion architecture by replacing the
original attention module with a novel attention module that can handle three
contexts: the text prompt, foreground reference image, and background refer-
ence image. As depicted in Figure 3a, we utilize text and visual encoder of a
pre-trained CLIP model to extract the sequential text feature yt ∈ RLt×Ct and
local image features yf ∈ RLf×Cf and yb ∈ RLb×Cb for the prompt, foreground
reference image, and background reference image, respectively. Here, L and C
denote the length and the channels of the feature sequence. For the case of mul-
tiple foregrounds in one scene, we concatenate the features from all foreground
reference images along the length dimension. Given the input feature x, the
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Fig. 3: Diagram illustrations of (a) attention module in the VideoStudio-Img which
takes the scene prompt and foreground/background reference images as the inputs and
(b) attention module in the VideoStudio-Vid conditioning on the scene-reference image
and the described action category.

outputs z of the attention are computed as

y = CA1(x, yt) + CA2(x, yf ) + CA3(x, yb),

z = x+ SA(y),
(2)

where CA1 and SA are the cross-attention and self-attention modules, respec-
tively, in the original Stable Diffusion architecture. We add two additional cross-
attention modules, CA2 and CA3, which leverage the guidance provided by entity
reference images. Moreover, we propose to optimize the parameters of CA2 and
CA3 while freezing the other parts of the network.

The VideoStudio-Vid is a video diffusion model that employs the scene-
reference image, the action described in the prompt of the event, and camera
movement in the script as the inputs. Particularly, we start by extending the
Stable Diffusion model to a spatio-temporal form and replacing the original
attention module with a new one that is conditioned on the scene-reference
image and action category, as shown in Figure 3b. Taking 400 action categories
in Kinetics [4] as an action vocabulary, an indicator vector ya ∈ [0, 1]400 is
built to infer if each action in the vocabulary exists in the scene prompt and
subsequently converted into feature space using a linear embedding f . For the
scene-reference image, we use the visual encoder of CLIP to extract the image
feature ys ∈ RLs×Cs , which is then fed into the cross-attention operation. The
original self-attention is decomposed into a spatial self-attention (Spatial SA)
and a temporal self-attention (Temporal SA), which operate self-attention solely
on spatial and temporal dimension, respectively, to reduce computations. Hence,
given the input feature x, the attention module is formulated as

y = CA(x, ys) + f(ya),

z = x+ Temporal SA(Spatial SA(y)).
(3)

Moreover, we further inject several temporal convolutions behind each spatial
convolution into the Stable Diffusion architecture, to better capture temporal
dependencies in image-to-video generation.
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To reflect the camera movement stated by the script in the generated video,
we uniquely modify the frames in the intermediate step of sampling process by
warping the neighboring frames based on the camera moving direction and speed.
We execute this adjustment after the first Tm DDIM sampling steps, followed by
continuing the sampling process. Such modification ensures that the resultant
video clip maintains the same camera movement as we warp the intermediate
frames. In general, setting a small Tm for early modification may not effectively
control the camera movement, while a late modification may affect the visual
quality of the output videos. In practice, we observe that Tm=5 provides a good
trade-off. We will detail the formulation of the modification process and the
ablation study of the step Tm in our supplementary materials.

4 Experiments

4.1 Datasets

Our VideoStudio framework is trained on three large-scale datasets: LAION-
2B [45], WebVid-10M [1] and HD-VG-130M [56]. The LAION-5B is one of the
largest text-image dataset consisting of around 5 billion text-image pairs. To
train VideoStudio-Img, We utilize a subset, namely LAION-2B, which focuses
on the text prompts in English. The WebVid-10M and HD-VG-130M are the
large-scale single-scene video datasets, containing approximately 10M and 130M
text-video pairs, respectively. VideoStudio-Vid is trained on the combination of
WebVid-10M and a randomly chosen 20M subset from HD-VG-130M.

To evaluate video generation, we select the text prompts from three video
datasets, i.e., MSR-VTT [61], ActivityNet Captions [22] and Coref-SV [26]. The
first one provides the single-scene prompts, while the remaining two datasets
comprise multi-scene prompts. The MSR-VTT consists of 10K web video clips,
each annotated with approximate 20 natural sentences. We utilize the text an-
notation of validation videos to serve as single-scene prompts in our evaluation.
The ActivityNet Captions dataset is a multi-event video dataset designed for
dense-captioning tasks. Following [26], we randomly sample 165 videos from the
validation set and exploit the event captions as the multi-scene prompts. The
Coref-SV is a multi-scene description dataset, which was constructed by replac-
ing the subject of multi-scene paragraphs in Pororo-SV dataset [21,24]. Coref-SV
samples 10 episodes from the Pororo-SV dataset and replaces the subject with
10 real-world entities, resulting in 100 multi-scene prompts.

4.2 Evaluation Metrics

For the video generation task, we adopt five evaluation metrics. To assess the
visual quality of the generated videos, we utilize the average of the per-frame
Fréchet Inception Distance (FID) [13] and the clip-level Fréchet Video Distance
(FVD) [51], both of which are commonly used metrics. We also employ the
CLIPSIM [58] metric to evaluate the alignment between the generated frames
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and the input prompt. To verify the content consistency, we calculate frame
consistency (Frame Consis.) by determining the CLIP-similarity between con-
secutive frames, serving as an intra-scene consistency measure. Additionally,
we employ the Grounding-DINO detector [27] to detect common objects across
scenes and then calculate the CLIP-similarity between the common objects ap-
peared in different scenes, achieving cross-scene consistency (Scene Consis.).

4.3 Implementation Details

We implement the proposed VideoStudio using the Diffusers codebase on the
platform of PyTorch.

Training stage of VideoStudio-Img. VideoStudio-Img is originated from
the Stable Diffusion v2.1 model by incorporating two additional cross-attention
modules. These modules are initialized from scratch and trained on the text-
image pairs from LAION-2B dataset, while other parts of the network are frozen.
For each image, we randomly sample a 512×512 patch cropped from the original
image, and utilize the U2-Net model to segment the foreground area of each
patch. The isolated foreground and background areas serve as the foreground
and background reference images, respectively, to guide the generation of the
input patch. We set each minibatch as 512 patches that are processed on 64
A100 GPUs in parallel. The parameters of the model are optimized by AdamW
optimizer with a fixed learning rate of 1× 10−4 for 20K iterations.

Training stage of VideoStudio-Vid. VideoStudio-Vid is developed based
on the Stable Diffusion XL architecture by inserting temporal attentions and
temporal convolutions. The training is carried out on the WebVid-10M and HD-
VG-130M datasets. For each video, we randomly sample a 16-frame clip with
the resolution of 320×512 and an FPS of 8. The middle frame of the clip is
utilized as the scene-reference image. Each minibatch consists of 128 video clips
implemented on 64 A100 GPUs in parallel. We utilize the AdamW optimizer
with a fixed learning rate of 3× 10−6 for 480K iterations.

4.4 Experimental Analysis of VideoStudio

Evaluation on VideoStudio-Img. We first verify the efficacy of VideoStudio-
Img in aligning with the input entity reference images. To this end, we take the
prompts from MSR-VTT validation set. The input foreground and background
reference images are produced by using LLM and Stable Diffusion model. We val-
idate the generated images on the measure of foreground similarity (FG-SIM)
and background similarity (BG-SIM), which are the CLIP-similarity values
with the foreground and background reference images, respectively. Table 1 lists
the performance comparisons of IP-Adapter [64] and different VideoStudio-Img
variants by leveraging different input references. Specifically, the use of fore-
ground/background reference image as guidance leads to higher FG-SIM/BG-
SIM values comparing to IP-Adapter or not leveraging reference images. Though
both of IP-Adapter and VideoStudio-Img exploit additional cross-attention to
maintain visual contents in image diffusion, our VideoStudio-Img is devised for
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Table 1: Performance comparisons of IP-
Adapter [64] and VideoStudio-Img vari-
ants with different input references on the
MSR-VTT validation set.

Input References FG-SIM BG-SIM CLIPSIMFG Ref. BG Ref.

w/o Ref. 0.5162 0.4131 0.3001

IP-Adapter [64]

✓ 0.7116 0.4035 0.2910
✓ 0.5128 0.5059 0.2954

VideoStudio-Img

✓ 0.7919 0.4393 0.2982
✓ 0.5362 0.5742 0.3002

✓ ✓ 0.8102 0.5861 0.3023

Fig. 4: Examples of the foreground and
background reference images and the
generated scene-reference image by the
VideoStudio-Img variants.

Foreground
Reference Image w/o Ref. w/ FG Ref. w/ BG Ref. VideoStudio-ImgBackground

Reference Image

Table 2: Performance comparisons for single-scene video generation with real frame
as scene-reference image on WebVid-10M.

Approach FVD (↓) Frame Consis. (↑)

RF+VideoCrafter [5] 293.3 97.9
RF+I2VGen-XL [69] 254.9 97.6
RF+VideoComposer [57] 231.0 95.9
RF+DynamiCrafter [60] 176.8 97.5
RF+SVD [2] 153.0 98.7

RF+VideoStudio-Vid− 157.3 98.5
RF+VideoStudio-Vid 116.5 98.8

a more complex scenario to specify foreground objects and background. There
are two major differences: 1) We pre-segment the foreground/background of the
reference images to avoid the visual content interference; 2) IP-Adapter extracts
global image features from CLIP, while ours utilizes local image tokens from
CLIP to improve spatial discrimination in local regions. As indicated by the re-
sults, emphasizing the feature learning of local region on the more clean (masked)
foreground/background reference image does benefit the visual alignment. Fur-
thermore, the combination of both reference images achieves the highest FG-SIM
of 0.8102 and BG-SIM of 0.5861. Figure 4 showcases four generated images by
different VideoStudio-Img variants with various reference images. The results
demonstrate the advantage of VideoStudio-Img to align with the visual contents
in the entity reference images.

Evaluation on VideoStudio-Vid. Next, we assess the visual quality of
the single-scene videos generated by VideoStudio-Vid. We exploit the real frame
from the WebVid-10M validation set as the scene-reference image irrespective
of the generation quality, and produce a video using the corresponding text
prompt, which is referred to as RF+VideoStudio-Vid. We compare our proposal
with five image-to-video diffusion models and one variant of VideoStudio-Vid,
i.e., RF+VideoStudio-Vid−, which disables the action guidance in VideoStudio-
Vid. Table 2 presents the performance comparisons for single-scene video gen-
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Table 3: Performance comparisons for single-scene video generation on MSR-VTT
validation set. RF indicates whether to utilize the real frame as the reference.

Approach RF FID (↓) FVD (↓)

CogVideo [17] 23.6 -
MagicVideo [71] - 998
Make-A-Video [47] 13.2 -
VideoComposer [57] - 580
VideoDirectorGPT [26] 12.2 550
ModelScopeT2V [55] 11.1 550
SD+VideoStudio-Vid 11.9 381

RF+VideoCrafter [5] ✓ 45.0 339
RF+I2VGen-XL [69] ✓ 37.4 264
RF+VideoComposer [57] ✓ 31.3 208
RF+DynamiCrafter [60] ✓ 26.1 196
RF+SVD [2] ✓ 15.3 172
RF+VideoStudio-Vid ✓ 10.8 133

ModelScopeT2V VideoDirectorGPT VideoStudio (Ours)

Scene-1: A mouse 
is holding a book 

and makes a 
happy face

Scene-2: A mouse 
looks happy and 

talks

Scene-3: A mouse 
is pulling petals 
off the flower

Scene-4: A mouse 
is ripping a petal 
from the flower

Input Multi-
Scene Prompt

Fig. 5: Examples of generated multi-scene videos by ModelScopeT2V [55], VideoDi-
rectorGPT [26] and our VideoStudio utilizing a multi-scene prompt from the Coref-SV
dataset. For each video, only the first four scenes are given. The results of VideoDirec-
torGPT are provided in the project webpage and thus with bounding box annotation.

eration on the WebVid-10M dataset. With the same scene-reference images,
VideoStudio-Vid− outperforms most image-to-video approaches and obtains com-
parable FVD performance with the strong baseline SVD. The competitive re-
sult is attributed to the deep network architecture and large-scale training set.
The performance is further enhanced to 116.5 FVD and 98.8 frame consistency
by RF+VideoStudio-Vid, verifying the superiority of involving action category
guidance to improve visual quality and intra-scene consistency.

Similar performance trends are observed on MSR-VTT dataset, as sum-
marized in Table 3. The methods in this table are grouped into two cate-
gories: the methods with or without real frame (RF) as reference. To com-
pare with the generation models without RF, we develop a two-step solution
that first generates the scene-reference image by Stable Diffusion, and then
converts the image into a video clip by VideoStudio-Vid, which is denoted as
SD+VideoStudio-Vid. Specifically, VideoStudio-Vid attains the best FVD on
both settings with and without a real frame as reference. SD+VideoStudio-Vid
is slightly inferior to ModelScopeT2V in FID. We speculate that this may be
the result of not optimizing Stable Diffusion on video frames, resulting in poorer
frame quality against ModelScopeT2V. Nevertheless, SD+VideoStudio-Vid ap-
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Table 4: Performance comparisons for multi-scene video generation on ActivityNet
Captions dataset.

Approach FID (↓) FVD (↓) Scene Consis. (↑)

ModelScopeT2V [55] 18.1 980 46.0
VideoDirectorGPT [26] 16.5 805 64.8

VideoStudio w/o Ref. 17.3 624 50.8
VideoStudio 13.2 395 75.1

Foreground
Reference Image

Background
Reference Image

Scene-1: The cute Shiba lies in the room

Scene-2: The cute Shiba with smile sits in the car and goes to a place

Scene-3: The cute Shiba plays in flowers

Scene-4: The cute Shiba rests next to a tree

Output video Foreground
Reference Image

Background
Reference Image

Output video

Scene-1: The cute cat lies in the room

Scene-2: The cute cat with smile sits in the car and goes to a place

Scene-3: The cute cat plays in flowers

Scene-4: The cute cat rests next to a tree

Fig. 6: Two examples of generated multi-scene videos by our VideoStudio using the
real images as entity reference images.

parently surpasses ModelScopeT2V in FVD, validating the video-level quality
by VideoStudio-Vid.

To evaluate the effectiveness of the action category condition for motion
generation, we additionally implement an ablation study on the recent released
VBench [19] benchmark. We measure the action score in VBench to assess
whether human subjects can accurately execute the specific action mentioned in
the text prompts. By using the action category as the condition in video diffusion,
the action score of VideoStudio-Vid is improved from 90.3% to 96.5%, indicating
the efficacy of action category condition to emphasize motion patterns.

4.5 Evaluations on Multi-Scene Video Generation

We validate VideoStudio for multi-scene video generation on ActivityNet Cap-
tions and Coref-SV datasets. Both of the datasets consist of multi-scene prompts,
which necessitate the LLM to write the video script based on the given prompt
of each scene. We compare with three approaches: ModelScopeT2V, VideoDirec-
torGPT and VideoStudio w/o Ref. by disabling the reference images in VideoStu-
dio. Table 4 details the performance comparisons on ActivityNet Captions. As
indicated by the results in the table, VideoStudio exhibits superior visual quality
and better cross-scene consistency. Specifically, VideoStudio surpasses VideoStu-
dio w/o Ref. by 24.3 scene consistency, which essentially verifies the effectiveness
of incorporating entity reference images. Moreover, VideoStudio leads to 10.3
and 29.1 improvements in scene consistency over VideoDirectorGPT and Mod-
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Table 5: Performance comparisons for multi-scene video generation on Coref-SV.

Approach CLIPSIM (↑) Scene Consis. (↑)

ModelScopeT2V [55] 0.3021 37.9
VideoDirectorGPT [26] - 42.8

VideoStudio w/o Ref. 0.3103 40.9
VideoStudio 0.3304 77.3

Scene-1: An old woman opens her window and gives a big yawn. She is out of her house 
which is in the middle of a forest. The whole land is covered with snow

Scene-2: The old woman is introducing herself to the audiences with 
a nice smile. The old woman is in her cabin

Scene-3: The old woman is walking around her house. The whole land is covered with snow 

Scene-4: The old woman is making a snowball. The woods are covered with snow

Scene-1: A black hair boy is in the library

Scene-2: The black hair boy is starting to read a book about monster

Scene-3: In the story, at night, a big scary monster has appeared in village

Scene-4: The black hair boy is still reading the book at the story's night background

Scene-1: A pot of water boils on a stove

Scene-2: A man shows us a package of spaghetti then adds it to the boiling water

Scene-3: The man stirs the spaghetti in the pot

Scene-4: The man drains the spaghetti and rinses it before putting it into a bowl

Input Prompt: A man is cooking spaghetti Input Prompt: An old woman is walking around her house in the snow Input Prompt: A black hair boy is reading a book related to the monster

Fig. 7: Examples of generated multi-scene videos by VideoStudio on MSR-VTT. For
each video, only the first four scenes are given.

elScopeT2V, respectively. Similar results are also observed on Coref-SV dataset,
as summarized in Table 5. Note that as Coref-SV only offers prompts without the
corresponding videos, FID and FVD cannot be measured for this case. As shown
in the table, VideoStudio again achieves the highest cross-scene consistency of
77.3, making an absolute improvement of 39.4 and 34.5 over ModelScopeT2V
and VideoDirectorGPT. Figure 5 showcases an example of generated four-scene
videos by different approaches on Coref-SV, manifesting the ability of VideoStu-
dio on generating visually similar entities (e.g., mouse/garden) across scenes. Fig-
ure 6 further shows two examples of multi-scene video generation by VideoStudio
using the real images as entity reference images, which demonstrates the
potential of VideoStudio in customizing the generated objects or environments.

4.6 Human Evaluation

Multi-Scene Video Quality. In this section, we conduct a human study to
evaluate the entire process of generating multi-scene video from a single prompt.
We compare our VideoStudio with four approaches: ModelScopeT2V w/o
LLM and VideoStudio w/o Ref. w/o LLM to generate five scenes by du-
plicating the input prompt, ModelScopeT2V w/ LLM and VideoStudio
w/o Ref. to utilize LLM to provide video script as described in Sec. 3.1 while
generate each scene individually. We invite 12 evaluators and randomly select
100 prompts from MSR-VTT validation set for human evaluation. We show all
the evaluators the five videos generated by each approach plus the given prompt
and ask them to rank the five videos from 1 to 5 (good to bad) with respect
to the three criteria: visual quality (VQ), logical coherence (LC) and content
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Table 6: The user study on three criteria: visual quality (VQ), logical coherence (LC)
and content consistency (CC).

Approach VQ (↓) LC (↓) CC (↓)

ModelScopeT2V w/o LLM 4.5 4.7 3.9
ModelScopeT2V w/ LLM 4.5 3.8 4.2

VideoStudio w/o Ref. w/o LLM 2.0 3.0 2.3
VideoStudio w/o Ref. 2.4 2.3 3.4
VideoStudio 1.6 1.2 1.2

Table 7: User preferences on script/videos by using different LLMs in VideoStudio.

ChatGLM3-6B [8] GPT-4 [38] Tie

Video Script 25% 37% 38%
Multi-Scene Video 20% 21% 59%

consistency (CC). For each approach, we average the ranking on each criterion
of all the generated videos. As indicated by the results in Table 6, the study
proves the impact of LLM in generating video script and entity reference im-
ages to improve logical coherence and content consistency, respectively. Figure 7
illustrates the examples of the generated multi-scene videos by our VideoStudio.

Different LLMs. To further investigate the effectiveness of different LLMs
for multi-scene video generation, we carried out an ablation study on a variant
of VideoStudio with GPT-4 [38] in Table 7. Evaluators vote on the preferring
video text script by using ChatGLM3-6B and GPT-4, and the corresponding
multi-scene videos generated by VideoStudio. “Tie” refers to a close preference.
The results indicate that the video script generated by GPT-4 is of higher quality
than ChatGLM3-6B. This is not surprising given the significantly larger param-
eters of GPT-4 (∼1T v.s. 6B). Nevertheless, the voting on multi-scene videos is
comparable, showing that the use of an open-source LLM does not affect video
quality much. Our exploitation of open-source LLM leads to an elegant view of
how responses of light-weight LLM could be improved for video script generation.

5 Conclusions

We have presented a new VideoStudio framework for consistent-content and
multi-scene video generation. VideoStudio involves LLM to benefit from the
logical knowledge learnt behind and rewrite the input prompt into a multi-scene
video script. Then, VideoStudio identifies common entities throughout the script
and generates a reference image for each entity, which serves as the link across
scenes to ensure the appearance consistency. To produce a multi-scene video,
VideoStudio devises two diffusion models of VideoStudio-Img and VideoStudio-
Vid. VideoStudio-Img creates a scene-reference image for each scene based on
the corresponding event prompt and entity reference images. VideoStudio-Vid
converts the scene-reference image into a video clip conditioning on the specific
action and camera movement. Extensive evaluations on four video benchmarks
demonstrate the superior visual quality and content consistency by VideoStudio
over SOTA models.
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The supplementary material contains: 1) the instructions of LLM; 2) the
implementation details of VideoStudio-Img; 3) the implementation details of
VideoStudio-Vid; 4) performance contribution of VideoStudio; 5) more video
examples generated by VideoStudio; 6) a video demo for VideoStudio.

1 Instructions of LLM

The LLM instructions, output examples and in-context examples for video script
and entity description generation are given in Figure 2 and Figure 3, respectively.
The multi-round dialogue for entity description generation is shown in Figure 4.

2 Implementation details of VideoStudio-Img

VideoStudio-Img is constructed on Stable Diffusion v2.1 model by incorporating
the two additional cross-attention modules. Table 1 details the structures of
VideoStudio-Img. We utilize the CLIP ViT-H/14 [42] as the text and visual
encoder to extract text features from text prompt, and local image features
from foreground/background reference image, respectively. The sequence length
Lt of the text features is 77 while the length Lf/Lb of foreground/background
image features is set as 256. The cross attention dimension Ct and Cf/Cb are
set as the default number in each block of the original diffusion model.

3 Implementation details of VideoStudio-Vid

We build the 3D UNet of VideoStudio-Vid by inserting temporal transformer and
temporal convolution layers into 2D UNet of SD-XL. Table 2 details the hyper-
parameters and structures of VideoStudio-Vid. We employ the CLIP ViT-H/14
as the visual encoder to extract image features from scene-reference images. To
enhance the visual alignment between the scene-reference image and synthesized
video, we concatenate the latent code of the scene-reference image with the noisy
video latent code along temporal dimension as the input of 3D UNet.

Action condition. In the stage of model training, the VideoMAE [?] fine-
tuned on Kinetics-400 [4] is leveraged as the action classifier to measure the
action probability (i.e., indicator vector) ya of input videos. A linear embedding
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Table 1: Detailed hyper-parameters and structures of VideoStudio-Img.

Hyper-parameter Value Hyper-parameter Value

Base structure SD v2.1 Spatial transformer blocks [1, 1, 1, 1]
Latent shape 4 × 64 × 64 Image embed sequence 256
Channels 320 Text CLIP CLIP ViT-H/14
Layers per block 2 Parameterization ϵ
Channel multiplier [1, 2, 4, 4] Diffusion steps 1000
Attention resolutions [64, 32, 16] Noise schedule Scaled Linear
Head channels [5, 10, 20] β1 0.00085
Number of heads 64 βT 0.0120
CA embed dim 1024 Sampler DDIM
CA resolutions [64, 32, 16] Inference steps 50
Autoencoders AutoKL GPU Type A100-80G
Image CLIP CLIP ViT-H/14 GPU Number 64
Learning rate 1× 10−4 Train steps 20K
Total batch size 512 # of UNet params 915M

Table 2: Detailed hyper-parameters and structures of VideoStudio-Vid.

Hyper-parameter Value Hyper-parameter Value

Base structure SD-XL Spatial transformer blocks [0, 2, 10]
Latent shape 4 × 16 × 40 × 64 Temporal transformer blocks [0, 2, 10]
Channels 320 Temporal SA head number 64
Layers per block 2 Diffusion steps 1000
Channel multiplier [1, 2, 4] Noise schedule Scaled Linear
Attention resolutions [32, 16] β1 0.00085
Head channels [10, 20] βT 0.0120
Number of heads 64 Sampler DDIM
CA embed dim 1280 Inference steps 70
CA resolutions [32, 16] η 1.0
Autoencoders AutoKL Guidance scale 12.0
Image CLIP CLIP ViT-H/14 GPU Type A100-80G
Parameterization ϵ GPU Number 64
Learning rate 3× 10−6 Train steps 480K
Total batch size 128 # of 3D-UNet params 4.7B
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Fig. 1: The impact of trade-off parameter Tm for camera movement.

is then learnt on the probability ya and further treated as a condition to adjust
the video diffusion as demonstrated in the main paper. In inference stage, we use
the spaCy library to extract all action phrases from the input text prompt. Next,
the text features of the action phrases are obtained by using CLIP model, which
are further exploited for cosine similarity computation with action vocabulary
of Kinetics-400. For each action phrase, we choose the action category with the
max cosine similarity score. If the cosine similarity is lower than 0.2, the action
category will be dropped. After collecting all action categories and correspond-
ing cosine similarity, we construct the action indicator vector ya ∈ [0, 1]400 by
assigning the normalized cosine similarity into the corresponding category index.

Camera movement. We control the camera movement of each scene video
during the inference process of VideoStudio-Vid. Specifically, at inference timestep
t, the noisy video xt = αtx0 + σtϵ̂t is decomposed into the clean video x0 with
an estimated noise ϵ̂t = ϵθ (xt, t) with fixed scheduling weights αt and σt. The
noisy video xt is transformed into a video xt−1 with reduced noise:

xt−1 = sampling(xt, ϵ̂t, t), (1)

where xT represents the pure noise ϵT . sampling is the DDIM [49] update strat-
egy. After the first Tm steps, we execute an adjustment to the noisy video x(Tm−1)

to maintain the camera movement indicated by the video script as

x̂0 = (x(Tm−1) − σ(Tm−1)ϵ̂Tm)/α(Tm−1),

x0 = 0.5× x̂0 + 0.5× warp(x̂0, f low),

x(Tm−1) = α(Tm−1)x0 + σ(Tm−1) ˆϵTm ,

(2)

where warp(x̂0, f low) is to warp the frames in x̂0 based on the optical flow
of required camera movement, and x(Tm−1) is the modified noisy video. Such
modification ensures that the resultant video clip maintains the same camera
movement as we warp the intermediate frames. To analysis the impact of hyper-
parameter Tm, we conduct the experiments on the MSR-VTT dataset and cal-
culate the mean squared error (MSE) between the optical flow of generated and
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Table 3: Performance comparison on ActivityNet Captions dataset.

Approach Ref Training Data Architecture FID (↓) FVD (↓) Scene Consis. (↑)

ModelScopeT2V [55] LAION + WebVid-10M SD-2.1 18.1 980 46.0
VideoDirectorGPT [26] LAION + WebVid-10M + GLIGEN SD-2.1 16.5 805 64.8

VideoStudio
LAION + WebVid-10M SD-XL 17.7 789 49.1

LAION + WebVid-10M + HD-VG SD-XL 17.3 624 50.8
✓ LAION + WebVid-10M + HD-VG SD-XL 13.2 395 75.1

target videos with different Tm, as shown in Figure 1. In general, setting a small
Tm for early modification may not effectively control the camera movement,
while a late modification may affect the visual quality of the generated videos.
As indicated by the figure, Tm=5 provides a good trade-off empirically.

4 Performance Contribution of VideoStudio

To ablate the performance contribution of VideoStudio more transparent from
different perspectives (e.g., with or without reference image, training data and
architecture), we report the performances of different VideoStudio variants on
ActivityNet Captions dataset in Table 3. The first variant is trained on LAION
and WebVid-10M, which is the same as in ModelScopeT2V. The improvement
over ModelScopeT2V in video quality (FID & FVD) is due to the deeper Stable
Diffusion (SD) backbone and the two-stage (T2I+I2V) framework. The second
variant further utilizes HD-VG dataset for model training and leads to slightly
better video quality. The full version of VideoStudio takes entity reference images
into consideration and improves both video quality and cross-scene consistency.

5 More Video Examples

Here, we present more examples of multi-scene videos generated by VideoStudio
on MSR-VTT in Figure 5 and Figure 6 with single foreground reference image
and multiple foreground reference images, respectively. For each example, the
input prompt, camera movement, foreground/background reference images and
generated multi-scene video are given. Figure 7 further showcases three examples
of generated multi-scene videos by VideoStudio using the real images as the
entity reference images including foreground and background reference images.

6 Video Demo

We have provided a video demo (VideoStudio.mp4) to illustrate the generated
videos by VideoStudio in various scenarios. For more details, please refer to the
offline project page (VideoStudio.html).
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Instructions:
Given a single text prompt, you need to envision a multi-scene video by generating a sequence of prompts to describe the text prompt. For each 
scene, you also need to generate the set of entities needed and describe the background scene where the video should occur. Related scenes 
should maintain similar entities and background scenes. Before you write each description, you must follow these instructions:
1. Each scene prompt must contain only a single motion or action.
2. Each scene prompt must include all relevant objects and describe the environment scene.
3. Make sure each scene prompt must be easy described by a shot video clip.
4. Gives 5-10 scenes in total.

Use the following format:
[scene_1: [prompt, entities, background]; scene_2: [prompt, entities, background]; … scene_n: [prompt, entities, background]]

The example of output:
[scene_1: [A woman walks along a village road; entities: woman; background: a picturesque coastal village with quaint houses and a view of the sea]]
[scene_2: [The woman's hair gently blows in the sea breeze; entities: woman; background: a picturesque coastal village with quaint houses and a 
view of the sea]]
...

In-context examples:
User:
A happy elderly couple is riding a tandem bicycle
LLM:
[scene_1: [The elderly couple mounts the tandem bicycle; entities: elderly couple, tandem bicycle; background: a scenic park with lush greenery and 
a winding path]]
[scene_2: [They pedal together, their smiles beaming with joy; entities: elderly couple, tandem bicycle; background: a scenic park with lush greenery 
and a winding path]]
…

Fig. 2: The LLM instructions, output examples and in-context examples for generating
scene prompts and common entities.

Instructions:
Given descriptions of several video clips, you need to give the camera movement of each clip. You must follow these instructions:
1. The camera movement composes of direction (including static, moving left, moving right, moving up, moving down, zoom in and zoom out) and 
speed (including slow, medium and fast).
2. The camera movement should be diverse.

Use the following format:
[scene_1: [camera movement]; scene_2: [camera movement]; ... scene_n: [camera movement]]

The example of output:
[scene_1: [moving left, fast]]
[scene_2: [zoom in, medium]]
...

In-context examples:
User:
[scene_1: The father kicks the soccer ball towards the son.]
[scene_2: The son receives the ball and dribbles towards the water.]
…
LLM:
[scene_1: [static, slow]]
[scene_2: [moving right, medium]]
…

Fig. 3: The LLM instructions, output examples and in-context examples for generating
camera movements.

Multi-round dialogue for entity description generation
User:
Give some aspects that should be considered when describing a photo of {entity name} in detail.
LLM:
...
User:
As a professional photographer, give more aspects that should be considered when describing a photo of {entity name} in detail, e.g., theme, 
composition, focal length and depth of field, details and texture, technology and post-processing, rendering technology, camera brand and model 
used, film type and characteristics, location and characteristics of light sources, reference to the master's work, etc.
LLM:
…
User:
Considering the above mentioned aspects, given you a sentence of video: "{input prompt}", give a description (single paragraph without 
segmentation) for a photo of {entity name} in this video in detail. You must follow these instructions:
1. The description provided should be concise and detailed.
2. Prohibition of artistic appreciation and personal emotions.
3. While retaining the author's meaning, clearly supplement all aspects just mentioned.
4. It is prohibited to include vague descriptions such as "may" and "may".

Fig. 4: The multi-round dialogue of LLM to achieve detailed entity description.
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Spanish language 
music video

Scene-1: The video begins with a shot of a Spanish-speaking woman

Scene-2: A close-up of the woman's face, her eyes closed in concentration as she dances

Scene-3: The video ends with a shot of the woman walking away

Input Prompt Entity 
Reference Image

Foreground: The photo 
depicts a woman sitting 
on a bench in a lush 
garden, surrounded by 
vibrant flora and fauna

Background: This photo 
captures the vibrant 
culture of Spain, 
showcasing a bustling 
street scene in the city of 
Barcelona

A baby girl is sitting 
in the cradle

Foreground: The photo 
depicts a baby girl sitting 
in a cradle, her tiny body 
supported by soft, white 
blankets

Background: This cozy 
bedroom photo features 
a soft bed with inviting, 
pastel-colored bedding 
and pillows

Scene-1: The baby girl reaches out to touch a stuffed animal

Scene-2: The baby girl is tired and sleeping in the cradle 

Scene-3: The mother gently picks up the baby girl and holds her close

A person with red 
clothes is preparing 

dessert in the 
kitchen

Foreground: In the 
photo, a person with a 
red shirt is seen preparing 
dessert in the kitchen. 
The subject is the central 
focus of the image

Background: This cozy 
home kitchen photo 
perfectly encapsulates 
the warmth and coziness 
of a nurturing space

Scene-1: A person with red shirt mixes ingredients in a bowl

Scene-2: The person with red shirt adds toppings to the dessert

Scene-3: The person with red shirt places the dessert in the fridge

Output VideoCamera 
Movement

slow forward

medium 
right

slow 
backward

slow right

static

static

slow right

static

medium 
right

Fig. 5: Three examples of generated multi-scene videos by VideoStudio on MSR-VTT
with single foreground reference image.
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A man is playing with a 
dog in the park after 

getting off work

Scene-1: The man is writing on the paper in the office room

Scene-2: The man is making a phone call in the office room

Scene-3: The man is playing with the dog in the park

Input Prompt Entity 
Reference Image

Foreground: The photo 
depicts a man who 
appears to possess 
graphic quality

Foreground: The photo, 
taken by a professional 
photographer, depicts a 
dog walking on a leash by 
a river of water

Background: The photo 
depicts a neutral-toned 
room with a desk and a 
chair, a sense of 
professionalism

Scene-4: The dog is sitting down under a tree in the park

Output VideoCamera 
Movement

slow left

medium left

slow left

slow forward

Background: The photo 
depicts a serene and 
picturesque public park, 
nestled in the heart of the city

Fig. 6: One example of generated multi-scene videos by VideoStudio on MSR-VTT
with multiple foreground reference images.
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Scene-1: The cat lies in the room

Scene-2: The cat lies in the driving car

Scene-3: The cat plays in the flowers

Foreground 
Reference Image

Background 
Reference Image

Scene-1: The parrot stands in the bedroom

Scene-2: The parrot stands in the forest

Scene-3: The parrot stands in front of the river

Scene-1: The motorcyclist stays in the town

Scene-2: The motorcyclist is riding on the road under the sunset

Scene-3: The motorcyclist is ridding on the moon

Output Video

Fig. 7: Three example of generated multi-scene videos by our VideoStudio using the
real images as entity reference images.
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